Tungsten mineralization in Greenland
Preliminary results of a resource assessment workshop

Bo Møller Stensgaard, Diogo Rosa & Lars L. Sørensen
bmst@geus.dk; dro@geus.dk

Geological Survey of Denmark and Greenland
Ministry of Climate, Energy and Building, Government of Denmark

Greenland Day, Perth 2013
December 10, 2013

With acknowledgements to members and observers in the MIMR-GEUS Mineral Assessment Workshop 2013 on potential for undiscovered tungsten deposits in Greenland and special thanks to:
L. Meinert, USGS; P. Pollard (consult, Australia), A. Steenfelt, N. Henriksen, GEUS; J. Pedersen (consultant).
Why Tungsten?

Important industrial applications:

- Cemented carbides – hard metals
 - tools and equipment for the construction, metalworking, mining, and oil & gas industries
- Tungsten in steel
 - alloying small quantities of tungsten with steel greatly increases its toughness.
 - improving the high temperature properties of steel
- Lamp Industry
 - as filament, or as electrode material
- Electronic and electrical industry
- Chemical applications

Supply risks:
Increasing concentration of production

= Critical Mineral

BGS, 2011 (Source: Roskill, 2010)
Market trends...

Production

Source: USGS, 2013

Total production: 71,120 t WO₃

Reserves 2012

Total reserves: 2,340,200 t WO₃

Production 2012

Source: USGS, 2013

Total production: 71,120 t WO₃
Tungsten – price...

APT = benchmark for tungsten concentrate is ammonium paratungstate (APT), which is the key intermediate product and most commonly traded tungsten material

GFC = global financial crisis

mtu = metric ton units (mtu); 1 mtu of APT contains approximately 7.93kgs of tungsten

Source: Schmidt et al. 2012 (ITIA)
What are we asked as (economic) geologist?

Resources...
• *Where are the deposit(s),*
• *how many*
• *how much,*
• *how do we find it?*

Basically; the starting point... as (economic) geologist...

— *discriminate areas with mineral potential from those that are barren*
Mineral Resource Assessment: tungsten in Greenland

Outline the regional locations, and estimate the probable amounts, of tungsten resources to a depth of one kilometer below the surface in Greenland.

Procedure:
Compile and use all available data and knowledge to facilitate a discussion of possibilities for undiscovered tungsten mineralizing systems/deposits from which estimated numbers of undiscovered deposits can be derived in a quantitative resource estimation.
Two models:
1. Tungsten Skarn Deposits
 (Cox 1986; SIDEX 2002)

1. Tungsten Veins
 (Cox & Bagby 1986; SIDEX 2002)

Fig. 4: Sketch showing the position of tungsten mineralized zone in section.

1. Slate mottled with mica, hornfelsized zone, hornfels zone.
2. Greisenized granite, potassic, sodic-feldspathized granite.
3. Tungsten-bearing quartz vein zone.
The procedure...

- Expert panel – 12 members
 - Tungsten experts from US and Australia
 - Economic and regional geologist, geochemists, geophysicists.
 - Company, Survey and Academic; international
 - Workshop observers

1. Areas with permissive geology are defined (tracts)
2. All data, maps, information, etc. is assessed and discussed – geology, exploration history, etc.
3. Individual bids on the number of undiscovered tungsten deposits in tracts at different confidence levels
4. Consensus bids on undiscovered
5. Estimation of resources [Monte Carlo simulation]

Mineral Assessment Workshop procedure; slightly modified version of the rules for the ‘3-part undiscovered mineral resource estimation methodology’ developed and used by USGS
GEUS stream sediment
<0.1 mm grain size fraction
samples with W > 2 ppm

HMCs are obtained using different methods, hence W data are not directly comparable.
<table>
<thead>
<tr>
<th></th>
<th>N90</th>
<th>N50</th>
<th>N10</th>
<th>N05</th>
<th>N01</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1_Vein</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>S2_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S3_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E1_Vein</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>E2_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E3_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E4_Vein</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>NW1_Vein</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>S1_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S2_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S3_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E1_Skarn</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>E2_Skarn</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E3_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E4_Skarn</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>NW1_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Central East Greenland
• Archean and Proterozoic basement and crystalline complexes
• Mesoproterozoic metasediments – Eleonore Bay Supergroup
• 930 Ma granites
• North Atlantic Caledonies – thrusting
• Caledonian / Devonian granites
• Post Caledonian sedimentary basins
• Palaeogene intrusions
Neoproterozoic - Palaeozoic metasediments
Eleonore Bay Supergroup

14 km of shelf and carbonate platform metasediments

Eleonore Bay Supergroup; Ymer Ø Group, Geologfjord [cliff-face 1 km]
Caledonian / Devonian granites
From Baker, 2005.
Summary:

W anomalies are associated with extensional faulting and
1) late Caledonian leucogranites, where emplaced in lower EBS,
2) Devonian acid magmatism,
3) Palaeogene acid magmatism.

Central East Greenland
Ymer Ø
Tungsten vein structure at south-side of Noa Dal
Ymer Ø
South Margeries Dal

Nordisk Mineselskab, 1984

<table>
<thead>
<tr>
<th>Locality</th>
<th>Tonnage</th>
<th>Grade WO₃ %</th>
<th>Tonnes per strike metre</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Marg. Dal – W</td>
<td>75.000</td>
<td>2.5 %</td>
<td>350</td>
</tr>
<tr>
<td>N Marg. Dal – W</td>
<td>42.000</td>
<td>0.7 %</td>
<td>330</td>
</tr>
<tr>
<td>N Marg. Dal – Sb</td>
<td>108.000</td>
<td>3.5 %</td>
<td>650</td>
</tr>
</tbody>
</table>
Alpefjord Tungsten vein:
Garnet-hbl.-px. skarnoid
• Scheelite, fluorite, sphene, apatite
• 0.1–0.8% W + Be, Sn, Bi
Quartz veins; 5 km²
• Oldest veins carry scheelite
• Younger veins: arsenopyrite, galena, chalcopyrite, pyrrhotite, bismuthinite
• 0.1% W, 0.2% As

Kalkdal Tungsten Skarn:
Biotite granite and granodiorite (434 Ma) skarn in marble within granite contact
• Scheelite in actinolite, diopside and garnet skarn
• Sericitization and scapolite formation
• 500 ppm W (max. 2% W)
Consensus undiscovered tungsten deposit estimates

<table>
<thead>
<tr>
<th></th>
<th>N90</th>
<th>N50</th>
<th>N10</th>
<th>N05</th>
<th>N01</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1_Vein</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>S2_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S3_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E1_Vein</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>E2_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E3_Vein</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E4_Vein</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>NW1_Vein</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>S1_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S2_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S3_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E1_Skarn</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>E2_Skarn</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E3_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E4_Skarn</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>NW1_Skarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

300 km
Tungsten mineralization in Greenland
Preliminary results of a resource assessment workshop

Bo Møller Stensgaard, Diogo Rosa & , Lars L. Sørensen
✉ bmst@geus.dk; dro@geus.dk

Geological Survey of Denmark and Greenland
Ministry of Climate, Energy and Building, Government of Denmark

Greenland Day, Perth 2013
December 10, 2013

Thank you!
Devonian granites

A reddish Devonian granite is seen at the top of the slope. Relief is c.1000 m.

Geochemical Sn, W, Mo, Nb etc. anomalies in the surrounding drainage systems.
Ymer Ø
South Margeries Dal
1979 Outcrops with scheelite located in S. and N. Margeries Dal by Nordisk Mineselskab