Sediment-hosted copper in Greenland
Sediment-hosted copper in Greenland - Assessment of potential and undiscovered Cu deposits

With the growing world population and with the technological advances, copper will continue to be a very important commodity. The mineral potential of Greenland is underexplored. However, this magazine illustrates that Greenland could hold a good potential for undiscovered Cu deposits. Especially the large sedimentary successions in Greenland are favourable for sediment-hosted copper occurrences. Occurrences related to the Reduced-facies (Kupferschiefer) Cu, Redbed Cu, Revett Cu and Volcanic Redbed Cu types have all been discovered in Greenland. However, in most cases the known occurrences have only seen very limited investigation as only few exploration campaigns have been focused on copper.

Introduction

Sedimentary basin environments younger than 1600 million years (Ma) constitute c. 40% of Greenland’s 410 000 km² ice-free land. Of this, the Phanerozoic basins (<400 Ma) accounts for c. 20% (31 570 km²), the Lower Palaeozoic and the Neoproterozoic basins for c. 50% (85 280 km²) and the Mesoproterozoic basins for c. 30% (47 970 km²). These basins are well-known for several mineralisation types of which sediment-hosted copper, in the form of especially Reduced-facies and Redbed copper types, are some of the more encountered types. However, only limited exploration has been carried out on copper deposits hosted in the sedimentary successions.

A ‘Workshop on the Potential for Undiscovered Sedimentary Hosted Copper Deposits in Greenland’ was held in 2009. The purpose of the workshop was to assist the mineral sector in their planning of new exploration targets and provide the sector with the scientific background and necessary data to make qualified decisions. The workshop was arranged by the Geological Survey of Denmark and Greenland (GEUS) and the Bureau of Minerals and Petroleum (BMP). The workshop was also part of the cooperative international effort ‘Global Mineral Resource Assessment Project’ (GMRAp) led by the U.S. Geological Survey.

This magazine highlights some of the results from this workshop, including characteristics of the main sedimentary provinces in Greenland, their known Cu deposits and the resulting potential for undiscovered Cu deposits within these provinces.

How to evaluate undiscovered Cu deposits?

During the workshop, an evaluation of the potential for undiscovered sedimentary hosted Cu deposits in Greenland was carried out according to the standardised process utilised in the GMRAp. In this process, an assessment panel of experts discusses all available knowledge and data according to the mineralisation type about a specific area (tract) and assesses the possibility of finding deposits within this tract. The expert panel consists of geologists, geophysicists, ore geologists, etc. with specialist knowledge about the geology, mineralisation or mineral deposit model considered; both from academia and industry. Each tract is defined down to 1 km depth below surface. The members of the assessment team make their individual, anonymous estimates (bids) of the number of deposits of a specific size and grade they believe can be found and mined in a specific tract, under the best of circumstances. This is done on different confidence levels. A panel discussion of the bids leads to a consensus bid, which is used as input to a statistical simulation. The result is an estimate (prediction) of the size of undiscovered tonnage of ore and number of tonnes of the commodity in question the tract contains. The statistical simulation includes global inventories/curves of tonnage and grades about known deposits/ mines of the mineral deposit model in question. The deposit size and grades that the members of the assessment panel give their bids on are defined by the median of the grade-tonnage curves.

Copper deposit types covered

Sediment-hosted Cu deposits account for c. 23% of the world’s Cu production and known reserves. They are also important sources of Ag and Co, and some deposits also produce other metals such as Pb, Zn, U, Au and PGE.

Sediment-hosted copper deposits are strata-bound epigenetic and diagenetic deposits formed independently through igneous processes. They occur most commonly in sedimentary basins that contain marine or large-scale, lacustrine rocks with evaporites that immediately overlie continental red beds and in isolate nonred units within the red-bed successions themselves. In general, they are formed within 30° of the paleoequator in arid environments and in sedimentary successions associated with intracratonic, long-lived rift or passive margin settings. Genetically, they form as a result of fluid mixing in permeable sedimentary and (more rarely) volcanic rocks. Two fluids are...
General characteristics of sediment-hosted copper deposits

<table>
<thead>
<tr>
<th>Mineral deposit subtype</th>
<th>Synonyms</th>
<th>General description</th>
<th>Mineralisation</th>
<th>Depositional environment</th>
<th>Ore control</th>
<th>Host rock types</th>
<th>Ore tonnage and grade</th>
<th>Global examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced-facies Cu</td>
<td>Copper-shale, stratabound copper hosted by low-energy sediments, marine paralic, Kupferschiefer type, Central African type</td>
<td>Stratabound, disseminated copper sulphide deposits in reduced-facies sedimentary rocks overlying or interbedded with redbed sequences or subaerial basalt flows.</td>
<td>Copper mobilised by oxidised brines; the reducing sulphide-bearing fluids are derived from reduction of sulphate in marine or lacustrine, organic-rich, fine-grained sediments. Sabkhas, evaporites, or other sources of brines are important.</td>
<td>Formed in continental clastic sedimentary basins succeeded by epicontinental shallow marine or lacustrine basin. Within 30° of the palaeoequator.</td>
<td>Pyritic shales, algal mats or reef colonies are important as reducing environments. Late orogeny-genesis of fracture-permeability and hydrologic setting to drive the process of fluid mixing is important.</td>
<td>Shale, siltstone, clay (reduced facies marine or lacustrine rocks). Organic carbon and disseminated pyrite common constituents.</td>
<td>Median ore tonnage of 33 Mt and a median copper grade of 2.3%</td>
<td>Kupferschiefer (Poland), Zambia deposits (African Copperbelt, Zambia).</td>
</tr>
<tr>
<td>Redbed Cu</td>
<td>Redbed-hosted Cu, sandstone-hosted Cu, continental redbed</td>
<td>Stratabound, disseminated copper and copper sulphides occurring in reduced zones of redbed sequences.</td>
<td>Copper mobilised by oxidised brines; the reducers are formed by the presence of plant debris. In some cases local evaporite beds are present.</td>
<td>Found within host rocks deposited by alluvial systems entering closed-basin plays or coastal environments, shallow seas and evaporite basins. Within 30° of the palaeoequator.</td>
<td>Permeable sandstone beds are a controlling factor. Pyrite can be a significant local reducer if present. Redox fronts (roll fronts) in ore-forming fluids and disequilibrium conditions are important chemical controls.</td>
<td>Redbed sequence containing white- or grey-bleached zones in sandstone and/or black, grey or green, reduced beds of shale and siltstone.</td>
<td>Median ore tonnage of 2 Mt and a median copper grade of 1.6%</td>
<td>Corocoro (Bolivia), Nacimiento and Stauber (New Mexico, US).</td>
</tr>
<tr>
<td>Revett Cu</td>
<td>None</td>
<td>Stratabound, disseminated copper and lead-zinc sulphides occurring in broad redox boundaries.</td>
<td>Copper mobilised by oxidised brines; the reducer is a broadly distributed and diffuse fluid, typically a hydrocarbon liquid or gas, or sulphide-rich sour gas.</td>
<td>Deposited as fan deltas entering closed-basin plays or coastal environments, shallow seas and evaporite basins. Within 30° of the palaeoequator.</td>
<td>Permeable beds are important. Redox front (roll front) controls copper deposition. Nearby marine basins with deposits of hydrosulphate are sources for the formation of reducing fluids.</td>
<td>Sandstone, quartzite, arkose and conglomerate.</td>
<td>Median ore tonnage of 14 Mt and a median copper grade of 0.8%</td>
<td>Spar Lake and Montanore-Rock Creek (Montana, US), Cashin Mine (Colorado, US), Dzhekazgan (Kazakhstan).</td>
</tr>
<tr>
<td>Volcanic Redbed Cu</td>
<td>Basaltic Cu, Andean manto Cu.</td>
<td>Disseminated, native copper and copper sulphide veins and infilling amygdalae, fractures and flow-top breccias in the upper parts of thick sequences of subaerial basalt, and copper sulphides in overlying sedimentary beds.</td>
<td>Copper mobilised from volcanic rocks during diagenesis or early-stage metamorphism; precipitation in permeable locations under favourable chemical, pressure, and temperature conditions.</td>
<td>Copper-rich continental to shallow marine basalt interlayered with redbeds in arid to semi-arid environments formed near palaeoequator.</td>
<td>Flow-top breccias, amygdalae, fractures in basalt; organic shale, limestone in overlying se-quence. Associated reduced, carbonaceous sedimentary rocks may play a role. Synchronous sedimentary faulting may be important.</td>
<td>Shallow marine basalt flows, breccias and tuffs, redbed sandstone, tuffaceous sandstone, conglomerate.</td>
<td>Not applicable. (USGS grade-tonnage curves have not been established).</td>
<td>Keweenaw and Calumet (Michigan, US), Kennecott and Denali (Alaska, US), Boleo (Mexico), Buena Esperanza (Chile), Redstone and Sustut (Canada).</td>
</tr>
</tbody>
</table>

Characteristics of the three first subtypes of sediment-hosted copper deposits are extracted from Cox et al. 2007. The cited medians of the ore tonnage and the copper grade are extracted from the established grade-tonnage curves. The characteristics of the genetically related Volcanic Redbed Cu deposit type are mainly extracted from Cox 1984 and Kirkham 1996.
involved, an oxidizing brine that carry copper and a reduced fluid, commonly formed in the presence of anaerobic, sulphate-reducing bacteria. Mineralisation in the sedimentary Cu systems occurs from early diagenesis to basin inversion and metamorphism. Overall, to form a sediment-hosted copper deposit four conditions are required:

1. An oxidizing source rock that is hematite-stable and must contain ferromagnesian mineral or mafic rock fragments, from which the copper can be leached.

2. A source of a basinbrine that mobilises the copper.

3. A source of reduced fluid to precipitate the copper and (in many cases) a supply of sulphur.

4. A structural and stratigraphic setting favourable for fluid mixing between the Cu-bearing brine and the reducing fluid and subsequent sulphide deposition.

According to Cox et al. (2007) sediment-hosted copper can be divided into three descriptive mineral deposit models: Reduced-facies Cu, Redbed Cu and Revett Cu. The three types differ in the strength and efficiency of the reducer at the site of deposition. Furthermore, the genetically related fourth type, Volcanic Redbed Cu, is included in the assessment.

Occurrences of sediment-hosted Cu are relatively frequent within sedimentary successions regarded as fertile for this type of mineralisation. However, the vast majority of sediment-hosted Cu mineralising systems produces small, mostly subeconomic occurrences. Nevertheless, large deposits are found within all of the above Cu mineral deposit types. Especially the Reduced-facies Cu type can form very large mineralising.
Most important known sediment-hosted copper occurrences in Greenland

<table>
<thead>
<tr>
<th>Type of Cu mineralisation</th>
<th>Location</th>
<th>Host rock</th>
<th>Name of deposit/occurrence</th>
<th>Grades and size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redbed Cu</td>
<td>Central East Greenland, Jameson Land Basin</td>
<td>Black shales of the Upper Permian Ravnefjeld Formation</td>
<td>Vimmelskaftet</td>
<td>Cu mineralisations are widespread in this area. Chip samples (n=39) over 20 m contain 200–850 ppm Cu, 1300–7000 ppm Pb and 350–1260 ppm Zn. 1-3 cm thick mineralised beds are known from several localities and contain 10% combined Zn and Pb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silty mudstone of the Upper Triassic Pingel Dal Beds of the Edderfugledal Member, Fleming Fjord Formation</td>
<td>Devonda</td>
<td>Cu mineralisations are widespread in this area. A chip sample over 2.5 m averages 200 ppm Cu, 200 ppm Pb and <500 ppm Zn.</td>
</tr>
<tr>
<td></td>
<td>North-East Greenland, Eleneore Bay Supergroup</td>
<td>Calcareous and dolomitic shales of the uppermost part of the Neoproterozoic Ymer Ø Group</td>
<td>Pingel Dal Beds</td>
<td>A widespread and lateral persistent Cu mineralisation is known over an area of 1000 km². Thickness of mineralised horizons is between 0.2–2 m. Chip samples (n=29) yield averages of 2000 ppm Cu over 1.1 m with a range of 200–5000 ppm Cu over 0.3–1.9 m.</td>
</tr>
<tr>
<td>Redbed Cu</td>
<td>Central East Greenland, Jameson Land Basin</td>
<td>Grey and red intercalated mudstones of playa flat origin of the Upper Triassic Fleming Fjord Formation</td>
<td>Nordenskiøld Fleming Fjord Formation</td>
<td>Cu mineralisations have been recorded continuously in 0.1–1 m thick sandstone beds over an area of 1000 km². Chip samples from 21 sections (650 m laterally) show an average content of 500 ppm Cu (from 27 to 3500 ppm) and 1.3 ppm Ag (from 0.8 to 4.8 ppm) over a thickness of 0.38 m (from 0.25 to 0.6 m). Maximum values stem from a selected grab sample with 27.5% Cu, 787 ppm Ag.</td>
</tr>
<tr>
<td></td>
<td>North-West Greenland, Thule Basin</td>
<td>Pale sandstones of the Meso- to Neoproterozoic Qaanaaq Formation of the Baffin Bay Group</td>
<td>Olrik Fjord</td>
<td>The Cu mineralisation is restricted to a 100 m² area. A composite grab sample shows 4000 ppm Cu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Braided alluvial plain conglomerate consisting of well-rounded quartzite, carbonate, granite pebbles/cobbles in sand and carbonate matrices of Upper Permian Huledal Formation</td>
<td>Rubjerg Knude</td>
<td>Cu mineralisations have been recorded continuously in 0.1–1 m thick sandstone beds over an area of 1000 km². Chip samples from 21 sections (650 m laterally) show an average content of 500 ppm Cu (from 27 to 3500 ppm) and 1.3 ppm Ag (from 0.8 to 4.8 ppm) over a thickness of 0.38 m (from 0.25 to 0.6 m). Maximum values stem from a selected grab sample with 27.5% Cu, 787 ppm Ag.</td>
</tr>
<tr>
<td></td>
<td>Central East Greenland, Jameson Land Basin</td>
<td>Isolated outcrops of copper mineralised sandstone. Grab samples yields up to 1.5% Cu.</td>
<td>‘Red Cliffs’</td>
<td>In some areas the Cu mineralisation extends over 20 m in thickness but in average the thickness is between 5 m and 10 m. For an area of 1.3×2.5 km a resource of 5 Mt with 3000 ppm Cu can be estimated (based on 13 chip samples).</td>
</tr>
<tr>
<td>Revett Cu</td>
<td>Central East Greenland, Jameson Land Basin</td>
<td>Braided alluvial plain conglomerate consisting of well-rounded quartzite, carbonate, granite pebbles/cobbles in sand and carbonate matrices of Upper Permian Huledal Formation</td>
<td>Ladderbjerg</td>
<td>Thickness of the Cu mineralisation is 10 m. A resource of 2.5 Mt with an estimated grade of 1500 ppm Cu has been estimated for an area of 1×4 km. An associated Pb mineralisation with an average thickness of 8 m is estimated to contain 1.5 Mt with an estimated grade of 1% Pb (based on eight chip samples from the area).</td>
</tr>
<tr>
<td></td>
<td>North-East Greenland, Hekla Sunn Basin</td>
<td>Shallow shelf sediments of the Jyske Ås Formation of the Neoproterozoic Hagen Fjord Group</td>
<td>Jyske Ås Formation</td>
<td>Composite grab samples from the Jyske Ås Formation contain up to 3% Cu and 100 ppm Ag.</td>
</tr>
</tbody>
</table>
systems as illustrated by the Kupferschiefer-related Cu deposits in the Permian Zechstein basin of Europe and the African Copper Belt deposits in the Neoproterozoic Katangan basin. Also the Volcanic Redbed Cu type can produce large deposits.

Sedimentary environments in Greenland

During the Proterozoic and throughout the Phanerozoic, major intercontinental-rift-related sedimentary basins formed in North and North-East Greenland with sedimentary successions reaching up to 18 km in thickness.

Within Meso- to Neoproterozoic basins, the most important sedimentary successions for copper deposits are the sediment-volcanic succession of the Thule Supergroup of the Thule Basin in North-West Greenland and the allochthonous, siliciclastic shelf and carbonate platform successions of the Eleonore Bay Supergroup in North-East Greenland.

The Thule Supergroup reaches a total thickness of at least 6 km, possibly 8 km and was deposited in an intracratonic fracture basin with block faulting and basin sagging formed in a divergent plate region.

The base of the basin is defined by an unconformity with underlying peneploained basement rocks. The sediments consist of multicoloured, mainly shallow-water, siliciclastic sediments with one interval of volcanic rocks with basic sills at several levels. The depositional environment is continental (intertidal to subtidal) to lacustrine and shallow marine with cratonic basaltic magmatism.

The Eleonore Bay Supergroup comprises a more than 14 km thick succession of shallow-water sedimentary rocks, which accumulated in a major sedimentary basin that evolved through a rapidly subsiding, siliciclastic shelf, a stable, siliciclastic shelf, carbonate platform development and glaciogenic deposition. The basin is exposed north-south for c. 450 km and east-west for c. 200 km. The early part of the succession probably started out at palaeolatitude c. 30°, whereas the late part of the succession ended at c. 40°.

The post-rift, thermal subsidence, sedimentary successions of the Neoproterozoic fluvioglacial to shallow marine sag deposits of the Hagen Fjord Group of the Hekla Sund Basin in North-East Greenland may also have copper potential. This succession overlies the up to 1350 m thick well-preserved Mesoproterozoic flood basalts of the Zig-Zag Dal Formation.

Late Palaeozoic and Mesozoic sedimentary basins related to continental break-up with formation of rift basins developed along the continent-ocean margin in North, East and West Greenland. Most interesting for sediment-hosted copper deposits are the Permian and Triassic successions of the Jameson Land Basin in East Greenland. The Upper Permian rocks of the Jameson Land Basin consist of an up to 180 m thick succession of non-marine conglomerate,
marine sandstone and shale and carbonate platform sediments including evaporites and algal-laminated gypsum. The shales have attracted considerable attention due to their high potential as hydrocarbon source rock. The Triassic succession consists of a c. 1700 m thick sequence of shallow marine to continental and lacustrine clastics with intercalations of evaporites and thin carbonates.

Known sedimentary hosted copper occurrences

Very limited exploration for sediment-hosted copper mineralisation has been carried out in Greenland. Only a few occurrences have been investigated in detail to a level which allows for qualified estimates of overall tonnage and grade.

Reduced-Facies Cu occurrences

In central East Greenland, within the Jameson Land Basin, Reduced-facies Cu deposits are known from both Upper Permian and Upper Triassic strata. The copper mineralisation within the black shales of the Ravnefjeld Formation is widespread and has been compared with the European Kupferschiefer type. Copper mineralisation within the Triassic strata of the Jameson Land Basin is known from several levels. The most pronounced and promising deposit is the Reduced-facies Cu-type mineralisation found within cyclically bedded sandstone, siltstone and mudstone of the Upper Triassic Pingel Dal Formation of the Edderfugledal Member, Fleming Fjord Formation.

In North-East Greenland, within the Neoproterozoic Eleonore Bay Supergroup (EBS) eight levels of stratiform and stratabound Cu mineralisation have been observed. This observation has been made within a 3 km thick stratigraphical pile of the uppermost three stratigraphical groups of the four groups that make up the EBS. The most widespread and persistent level of mineralisation occurs within the lowermost part of the Ymer Ø Group. Genetically, the mineralisation is interpreted to be syn-sedimentary to early diagenetic in origin and probably best represents a Reduced-facies Cu-type mineralisation. Algal mounds and pseudomorphed evaporites adjacent to the mineralised Cu level within the lowermost Ymer Ø Group may have played an important role in the formation of reducer brines. Also, the lowermost part of this Group was induced by a major transgressive event, possibly accompanied by a shift to more arid climate. Most Reduced-facies Cu deposits are formed during such transgressions of reduced marine sediments over redbed deposits. The mineralisation shows similarities with part of the Zambian copper belt and the Precambrian Belt Supergroup in Idaho and Montana. The mineralisation also displays similarities with Cu deposits in the Neoproterozoic Adelaidean Sequence of the Stuart Shelf, South Australia.

Redbed Cu occurrences

Copper mineralisations are found throughout the Triassic stratum in the Jameson Land Basin, central East Greenland. Redbed Cu-type mineralisations occur within the Ørsted
Dal and Malmros Klint members of the Upper Triassic Fleming Fjord Formation. The copper occurrences are hosted in two or more 0.1 to 1 m thick, grey, pale-yellowish weathering beds intercalated with red mudstones. Thin intraformational breccias, septarian nodules and plant fragments up to 30 cm long occur locally.

The entire stratigraphical succession of the Meso- to Neoproterozoic Thule Supergroup hosts redbed units in abundance. It is estimated, that redbed successions form 20 to 55% of the total stratigraphical thickness in four out of the five formations that constitute the Thule Supergroup. This means that redbed successions, depending on their position in the basin, make up from 0.5 to 1.9 km of the total sedimentary package of the basin. There is good evidence for long, extensive fluid/brine activity within the basin; and block faulting associated with half-graben structures may have provided the important fracture-permeability and hydrologic setting to drive the process of fluid mixing needed to form the Redbed Cu-type mineralisation.

This is also reflected by the distribution of known Redbed Cu occurrences within the Thule Supergroup, which all are adjacent to the major faults.

Revett Cu occurrences
Scattered, stratabound copper occurrences are known from the Upper Permian sandy
conglomerates of the Huledal Formation of the Jameson Land Basin, central East Greenland. Two of these occurrences are large enough to have been subjected to estimates of tonnage and grades. The Huledal Formation belongs to the marine Foldvik Creek Group which was deposited unconformably mainly on extremely flat Carboniferous – Lower Permian peneplain. The formation is up to 120 m thick with great thickness variation. The formation consists of poorly sorted, immature fluvial conglomerate beds, sandstone sheet deposits and some mudstones. The conglomerate constitutes a high pre-ore permeable bed. Parts of the Upper Permian succession are bituminous-bearing and are regarded as a good source rock for hydro-
carbon potential. At central Trail Ø, the Rubjerg Knude Cu deposit occurs within conglomerates of the Huledal Formation, which is 30–60 m thick here. Central Trail Ø is dominated by block faulting, which may have played an important role as the fluid pathway in the formation of the mineralisation. Above the conglomerate unit occurs a 50 m thick sandstone unit, which is overlain by a 10 m thick sabkha unit containing fine-grained gypsiferous sandstones and gypsum beds. This unit is followed by a complex unit that represents the erosional plateau with a variety of sandstones, siltstones, shales and various carbonate rocks. The mineralisation is associated with palaeo-channels within the conglomerate unit.

The metabasalts of the Mesoproterozoic Zig-Zag Dal Formation (red brownish-blackish succession) with the overlying sandstones of the Neoproterozoic Jyske Ås Formation (pale brownish succession) exposed on the west cliff face of Neergaard Dal, eastern I.C. Christensen Land, North-East Greenland. The cliff face is 400–500 m high and the valley is 4–5 km wide. Photo: Bjørn Thomassen.

Malachite-stained, elongated zone within pale sandstone surrounded by red sandstone of the Jyske Ås Formation. The zone appears to be structurally controlled. Photo: Bjørn Thomassen, Avannaa Resources Ltd.

Landat TM colour composite draped on a digital elevation model. Indications of known Cu occurrences within the Neoproterozoic Jyske Ås Formation along the N–S-oriented valley Neergaard Dal on eastern I.C. Christensen Land, North-East Greenland, can be seen on the image. The image is seen from the north. No vertical exaggeration.
Bitumen content between mineral grains is observed. The mineralisation is believed to be of the Revett Cu type. Still in the Huledal Formation, but farther north, scattered stratabound Cu occurrences are found, where the formation has an average thickness of 10 m. The most significant of these being the Ladderbjerg Cu deposit, which is more than 10 m thick in an area of 1×4 km.

Volcanic Redbed Cu occurrences
No firmly established Volcanic Redbed Cu occurrences are known from Greenland. However, Cu deposits have been found in North-East Greenland that may be candidates for this type of occurrence. These occur within the Neoproterozoic, post-rift, thermal subsidence sediments of the lower part of Hagen Fjord Group of the Hekla Sund Basin, which overlies the well-preserved Mesoproterozoic flood basalt of the Zig-Zag Dal Formation.

The copper occurs both as native copper and copper-sulphides. An elongated nature of the Cu occurrences suggests a relationship with graben faults and structures which may play an important role for the transportation of the mineralising fluids.

Potential areas for undiscovered copper deposits
At the ‘Workshop on the Potential for Undiscovered Sedimentary Hosted Copper Deposits in Greenland’ the members of the assessment team gave their bids on different confidence levels on how many copper deposits they thought could be discovered under the best circumstances. The distribution of undiscovered copper deposits on different confidence levels as well as the increase in numbers from one confidence level to another reflect the level of knowledge about the various areas and the overall feeling about the potential within the areas.

In general the assessment team agreed that the biggest potential for large-grade-tonnage deposits of the Reduced-facies Cu type was within the Neoproterozoic Eleonore Bay Supergroup in North-East Greenland and the Upper Triassic Pingel Dal Beds of the Fleming Fjord Formation in central East Greenland. Also the Hagen Fjord Group in North-East Greenland was regarded as having a large potential for deposits of the Volcanic Redbed Cu type.

Concluding remarks
Greenland represents a region for grass-root exploration with great potential for sediment-hosted copper mineralisations. Many sedimentary successions in Greenland are considered favourable and bear evidence of the mineralising processes needed to form a copper deposit. This is also reflected in the many known copper mineralisations discovered in all the sedimentary successions. However, in most cases only limited exploration campaigns have been carried out and only a few occurrences have seen detailed investigations. Especially interesting are the underexplored parts of the successions of the Eleonore Bay Supergroup in North-East Greenland and the Upper Permian and Triassic sediments in central East Greenland. They host known as well as have further potential for the important Reduced-facies Cu-type mineralisations in Greenland.
Key literature

